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Abstract—The thickness function of a simply supported rectangular plate is determined such
that the fundamental natural frequency of transverse vibrations attains an optimum value.
The volume of the solid plate, its size, and data pertaining to its material properties, are
assumed to be given.

The problem consists of determining the deflection function corresponding to the optimal
plate thickness function from a non-linear, fourth order partial differential eigenvalue problem,
derived by variational analysis.

Second and higher order normal derivatives of the deflection function are singular along
the boundary of the domain. This behaviour is investigated analytically, and taken into account
in a finite difference formulation of the problem, which is solved numerically by successive
iterations.

INTRODUCTION

In the present paper, a variational method is applied for the solution of an optimization
problem, governed by partial differential equations.

The method is similar to the one developed by Niordson[1] in 1965, and later applied by
Keller and Niordson[2], by the author[3], and by Karihaloo and Niordson[4, 5]. However
the problems dealt with in these papers are all related in the sense that they can be reduced
to a description by one independent variable, i.e. they resultin ordinary differential equations.

The present work deals with the two-dimensional problem of optimizing a thjn, simply
supported, rectangular solid plate, the volume, length and width, and Poisson’s ratio of
which are assumed to be given. The thickness function is determined from the condition
that the fundamental natural frequency of transverse vibrations attains a maximum value.

The analysis is based upon the general theory of #hin elastic plates, and the starting point
is the linear, fourth order partial differential equation of free, harmonic, transverse vib-
rations of a plate with an arbitrarily non-uniform thickness function. In connection with the
boundary conditions, this differential equation constitutes a fully-definite and self-adjoint
eigenvalue problem.

Treating the Rayleigh quotient expression of this problem by the variational approach
mentijoned above, we derive a highly non-linear, fourth order partial differential equation
coupled with a partial integral equation. This constitutes a fundamental eigenvalue problem
for the optimal deflection function, and a parameter.

This paper is also concerned with the solution of this eigenvalue problem, which in fact
constitutes a major part of the treatise. For this, a procedure of successive iterations is
developed and implemented by a finite difference technique.
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94 NIELS OLHOFF

Second and higher order normal derivatives of the deflection function are singular along
the simply supported boundaries of the rectangular plate. Therefore, it is necessary to
determine the types of these singularities analytically and to pay considerable attention to
them when developing the finite difference procedure.

The problem is found to be complicated by the fact that the construction of a formal
integration procedure ensuring convergence by successive iterations is not immediately
obvious. In fact, the solution cannot be based entirely upon integrations; some numerical
differentiations are unavoidable.

Numerical solutions of the optimization problem are obtained for different values of the
plate aspect ratio. As an asymptotic case, we find the optimal solution of a simply supported
vibrating beam of non-uniform height and constant width when the aspect ratio tends to
infinity.

The plate solutions obtained have rather smoothly varying thickness functions and must
be considered as local optima when compared with corresponding integrally stiffened
plate structures. It will finally be shown that a global optimum solution does not exist for
the problem under study.

TRANSVERSE VIBRATIONS OF PLATES OF
NON-UNIFORM THICKNESS
In the theory of thin elastic plates of non-uniform thickness, the deflection function w
corresponding to free, harmonic, transverse vibrations is governed by the dimensionless
partial differential equation

R - VIW g + VO W 1} op = AW, (H
where the parameter 1 is given by the expression

_@’pa®12(1 — v?)

The equation refers to a set of dimensionless Cartesian coordinates x, (« = 1, 2) given by
x, = X,/a, 3)

where X, are the original coordinates, and a is some characteristic length of the plate. The
commas in (1) indicate partial differentiation with respect to succeeding indices, and repeated
greek indices imply summation. Furthermore, J,; is the Kronecker delta, and A(x,) denotes a
dimensionless plate thickness function, defined by

h=HaV, 4)

where H(x,) is the actual thickness function and V is the volume of the plate.

In equation (2), w is the natural angular frequency of the plate, and p, v and E denote the
mass density, Poisson ratio and Young’s modulus, respectively, of the plate material.

Now, let the x,-axis coincide with a short side, and the x,-axis with a long side of our
rectangular plate, and let us choose the characteristic length a equal to that of a short side.
Hereby, as Fig. 1 indicates, our domain is bounded by the coordinate axes and by the lines
x; =1 and x, = ¢, where ¢ > 1 is the aspect ratio of the plate.

As is well known, the boundary conditions for a simply supported plate can be formu-

lated as
w=0 &)
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X1
Fig. 1. The plate domain.

and
B Aw=0 6)

along the boundary contour just mentioned. In (6), A denotes the Laplacian operator.

The differential equation (1) and the boundary conditions (5) and (6) constitute a linear
eigenvalue problem. The eigenvalues A and corresponding eigenfunctions w(x,) of this
problem are all dependent on, and uniquely determined by, the thickness function A(x,).

By applying the divergence theorem and by considering the boundary conditions, we see
that the eigenvalue problem is self-adjoint and fully-definite. Furthermore, the investigation
of the fully-definiteness reveals the following expression for the Rayleigh quotient of the
problem,

J, [P 201 = 90w, 12 = w0221 0, dx,
R[w] = _ = ™
f f hw? dx, dx,
0vo

It is well known that the Rayleigh quotient (7) equals an eigenvalue 4 of the problem (1),
(5) and (6) if the corresponding eigenfunction w(x,) is inserted. This is also expressed in (7).

VARIATIONAL ANALYSIS

Let us from now on assume the volume V of the plate to be given. According to (3) and
(4), we hereby impose the following constraint upon the dimensionless thickness function
h(x,):

f; foc hdx; dx, =1. (8)

Furthermore, let 1 denote the fundamental eigenvalue, and w the corresponding eigen-
function.

In order to find out whether it is possible to determine a thickness function 4, obeying (8)
and rendering A an optimal value, we shall now generalize the variational procedure first
outlined in[1] into the field of continua with two independent spatial variables.

Assuming an optimal thickness function to exist, we consider a family of non-negative
functions #(x,, €), containing the optimal solution A(x,, 0). The members of this family are
assumed to satisfy the volume constraint (8) and to depend differentiably upon the para-
meter e&.
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Associated with every thickness function A(x,, ¢), is a first eigenfunction w(x,, €). Due
to a well known theorem for differential equations, the functions w(x, , £) will be differentiable
with respect to ¢, since they are solutions of eigenvalue problems with the functions A(x,, &).
Furthermore, any w{x,, ¢) is an admissible function for the eigenvalue problem related to the
optimal thickness function #(x,, 0), since it is sufficiently differentiable with respect to x,
and satisfies the kinematical boundary conditions.

Let us now define a functional R, depending upon the parameters ¢ and & only:

1 ¢
[ [ ACxe ) Utx,, 9) dx, dx,
Rl, 8] = == ©)
f f h(x,, ewix,, 8)% dx, dx?
0

o]

where
Ulx,, 8) = [Aw(x,, 8)1F + 2(1 — )W 12(x,, O)FF — w 11(Xy, OIW 55(x,, O)].

This functional represents the Rayleigh quotient for the eigenvalue problem correspond-
ing to the thickness function #(x,, &), and it is identical with the eigen value A(¢) of this
problem for ¢ = . Specifically, for ¢ = & = 0, we have R[0, 0] = A(0), the optimal value to
be determined. A necessary condition for this is expressed by the equation

(dA/de),=5-0 =0 (10)
or
(dR/de)s=5=0 = (R )p=5=0 + (R 5);=5=0(d0/de),=5=0 - (11)
In fact, R[0, 6] represents the Rayleigh quotient related to the optimal thickness function
A(x,, Q).

Of all admissible functions w(x,, &), this quotient will be minimized by the first eigen-
function w{x,, 0) corresponding to A(x,, 0}, in accordance with Rayleigh’s minimum prin-
ciple. Thus we have (R ;),=5=09 = 0, so that (11) reduces to

(R,e)s=6=0 =0. (12)

Applying this condition to (9), dividing through by the denominator, and taking (7)
into account, we arrive at the equation

J.l fc [3/72{(AW)2 +2(1 - V)[(W,xz)z - W Wl — /1”’2](/7,3)5=0 dx; dx, =0, (13)
0+0

where the optimal thickness function, the corresponding deflection function and the optimal
eigenvalue are simply denoted by A, w and 4, respectively.

From the volume constraint (8), which also has to be satisfied by the optimal thickness
function, we obtain

fol J, (he-odx, dxs =0, (14)

Equations (13) and (14) are both satisfied if the multiplying expression of (% ),-, in the
integrand of (13) is independent of x_, i.e. constant. Thus we arrive at the optimality condition
of the present problem:

32{(AW)? + 2(1 — v)[(W 12)* — w W 501 — Aw? = 4. (15)
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Subsequently, a determining equation for the constant 4 will be derived. However, let us
first solve (15) for the possible optimal plate thickness function /

AN A+ w? 1
Hxa) = (5) [(Aw)z 20 =MW ) = W,uw,zz]} 1o

and find a convenient explicit equation for the corresponding optimal eigenvalue 4 by
combining (16) and (8):

17

A=

1 ¢ A + 2 1/2 2"
(fo ), [(Aw)z o w,uw,u]] ax dxz)

If we now multiply (15) by 4, integrate over the plate domain, and combine equations (7),
(8), (16) and (17), we get the following implicit equation for the quantity A in terms of

w(xd)ﬁ

1 e 2 172
f J‘ [ 3 A+w < ] w? dx, dx,
f=p 00 (Aw)* + 2(1 — V(W 12)* — w 11w 5,]

ffc[ A+ v ]I/de dx
0o LAWY +2(1 — V)[(W,lz)z — W W 12 .

In order to obtain an equation for the optimal deflection function w, we substitute (16)
in the differential equation (1) and get

(18)

A+ w? ]3/ 2
[(1 = V)wag + viw ]}
{{(AW)Z +2(1 - V)[(W,u)z - W 11W 2,] P o of
A+ w? ]1/2

=3 w. 19
[(Aw)z +2(1 = W)(w12)* — W W 22] {19)

The boundary conditions for w become, cf. (5), (6) and (16),
w=0 (20)

and

A+ w? ]3/2
Aw =0 21
e D012 = W 2] @D

invoked along the lines

(05 x2)

_ (13 x2) 0 S xl S 1

(1, %2) = (x,00 O0<x,<ec
(xl’ C)

By studying the non-linear partial differential equations obtained by the variational
procedure, we note firstly two equations, (16) and (17), explicitly expressing the optimal
thickness function 4 and the optimal value of the first natural frequency A, respectively, in
terms of the corresponding deflection function w and a parameter 4.

Secondly, we have obtained a highly non-linear, fourth order partial differential equation
(19), coupled with a partial integral equation (18). These two equations, in connection with
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the boundary conditions (20) and (21), constitute a fundamental eigenvalue problem for the
deflection and the parameter A4.

If w(x,) and the corresponding value of A are known, #(x,) and A can easily be computed
by substitution in (16) and (17). Therefore, the solution of the non-linear, partial differential
eigenvalue problem (18)-(21) is the principal object of the procedure.

The parameter A can be interpreted as the eigenvalue of this non-linear eigenvalue problem
and, furthermore, it can be simply correlated with the optimal frequency A: Observe that
the problem (18)—(21) is homogeneous and that it is solved by Kw(x,) and K24, K being any
finite constant, provided the function w(x,) and the corresponding A designate a solution.
Hence we are free to normalize the problem, for example by extending the set of equations
by the following equation

tee A+ w? 1/2 \/3
fo fo [(Aw)l +2(1 = V)[(w.12)? - w,,lw,n]] whdx dx, =5 (22)

Normalizing by prescribing this value of the right-hand numerator in (18), we identify A4
as A1/2,

A closed form solution of the non-linear eigenvalue problem stated above is not obtain-
able. Therefore it will be solved numerically by a successive iteration procedure based on a
finite difference formulation.

Before we proceed to a more detailed description of this procedure, let us for the sake of
expediency assume both the optimal plate and its corresponding fundamental deflection
function to be symmetrical with respect to the planes x, = 1/2 and x, = ¢/2, see Fig. 1.
This enables us to restrict numerical calculations to the smaller domain bounded by the
lines x, =0, x, =0, x, = 1/2 and x, = ¢/2.

Also, it is convenient to compress the equations written above in some detail. Let us do
this by introducing the shorter notation D for the function

2 3/2
A+w ] ’ @3)

D(x,) = [(Aw)2 +2(1 =W 12)* —w 11w 53]

which is proportional to the optimal plate thickness function cubed, cf. (16), and hence
proportional to the optimal plate bending stiffness function.
Now, in terms of D, the expressions of A and /4 become

3

A= 172 .c/2 2 29
16('[0 fo D3 dx, dxz)
and
A\172
h(x,) = (5) D3, (25)

The fourth order, non-linear partial differential equation (19) and the integral equation
(18) can be written in shorter form as

(DIl — V)W o5 + ¥8,5w . I} ag = 3D"w (26)
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and

172 .c/2
f j‘ DY3w? dx, dx,
o

4=2 1;;ec12 s 27
f D3 dx, dx,
o Jo

respectively. Recall that (27) is an implicit equation for the (positive) eigenvalue A.
Due to the assumed symmetry of w, the kinematical boundary conditions (20) can be
replaced by the conditions

w(xy, 0) = w(0, x;) = w (112, x,) = w 2(x, ¢/2) = 0 28

for the boundary just introduced.

The remaining boundary conditions for the differential equation (26) are still most
conveniently expressed in terms of the function on the left-hand side of equation (21}. Let
us introduce the short notation M for this scalar moment function,

A+ w?
(Aw)* +2(0 = WI(W,15)* — w4, W 23]

which, apart from the multiplying factor 1 + v, is equal to the sum of the moment tensor
components M, and M,, in the optimal plate.

Bearing the equilibrium conditions of a plate element in mind, we easily see that the bend-
ing moments M,,, M,, and hence the function M(x,) must be at least once continuously
differentiable, since the load of the plate is due to distributed inertia forces only. In com-
bination with the symmetry assumptionst made, this implies that M , and M , vanish along
the lines of symmetry x, = 1/2 and x, = ¢/2, respectively.

Hence, we can replace the boundary conditions (21) by

M(xy, 0) = M(0, x,) = M 1(1/2, x;) = M 5(xy, ¢/2) = 0. (30

M(x,) = [ ]3/2 Aw = DAw (29)

BEHAVIOUR OF THE SOLUTION NEAR THE BOUNDARY

The solution of the governing eigenvalue problem, (23) and (26)-(30), is singular along
the simply supportied boundaries x;, =0 and x, = 0.

Specifically, this is easily shown at the point (x,, x,} = (0, ¢/2), see Fig. 1. Here, the bound-
ary condition M = 0, with M given by (29), reduces to (w ;,)~* = 0, since we have W, =0
and w i, = 0 (due to the symmetry of w). According to equation (25), where D is defined by
(23), the revealed infinity of w ;, implies a vanishing of the plate thickness at the boundary
point considered.

Singularities should be expected[6] unless constraints are imposed on the thickness
function{7}.

In fact, the singular behaviour strongly influences the numerical solution procedure, and a
careful analytical investigation of the singularities is necessary, not just to get a satisfactory
numerical representation of the solution, but to obtain a solution at all.

Let us determine the type of the singularity at the boundary x; =0, 0 < x, < ¢/2 by
assuming the solution to be expandable in a series

wix,) = a,(x;)x; + ay(xy)xy % + < +gi(x)x, 7 + o 3D

t Observe that D and Aw may both have discontinuous first derivatives normal to the lines of symmetry.
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in the vicinity of x; = 0. All the coefficients are assumed to be sufficiently differentiable
functions, depending only upon x, . Furthermore, p is assumed to be the lowest non-integer
power of x,;, corresponding to a non-vanishing coefficient g,. As the expansion (31) must
agree with the boundary conditions w(0, x,) =0 and M(0, x,) =0, where M is given by
(29), we find, a priori, that p must belong to the interval [ <p < 2.

Now, by substituting (31) in the differential equation (26), taking (23) into account, and
setting the sum of the coefficients of the lowest order terms in x, equal to zero, we find p
equal to 3/2. From (26), only the terms Dw ,,,,, D w ,, and D ,;w, contribute to the
determining equation for p.

The result, p = 3/2, implies that w ;; and the optimal plate thickness function 4 (like D*/?)
are proportional to x, /2 and x,'/2, respectively, for small values of x,, and this is valid
along any normal x, = constant (0 < x, < ¢/2) to the simply supported boundary line
x, = 0. Similar analytical behaviour was found near the boundary of an optimally designed,
simply supported circular plate, performing transverse vibrations[3].

However, to obtain the solution numerically in the present case, more detailed knowledge
of its analytical behaviour near the simply supported boundaries is necessary, i.e. some
following powers in the series expansion (31) must be determined. Doing this successively
in a manner similar to that described above, we arrive at

w(x,) = a,(xy)x + g,(xz).\‘,3/2 + gz(-\'z)xxs/z + ‘13(%))‘13 +.. (32)

for small values of x,, and for 0 < x, < ¢/2. To obtain this expansion, not only the above
mentioned terms in (26), but also the terms D ,w,,, D w,, and D ;,w,, must be

encountered in the analysis.
Let us now use (32) to compute the following series expansions for Aw, D, D'/ and M,

the key functions of the problem. We find

Aw =3 g, "2+ 35 g, x4 (6as + ag o)X, . (33)
64 4312 32 S8k 5, 8k
= — R . TR ol 34
27 (913! [Xl 3912 . 3 12 o ] 34
D3 44" [ 28k ¥, 302 8 k2 X2+ ] (35)
o= X —— e o
3 gl : 9912 ' 9 12 !
and
64 A3* 13
:-2-:/‘—&_3—!_ {Zglxl +k3.’(512+...}, (36)
1

in the vicinity of x, =0, 0 < x, < ¢/2. The x,-dependent functions k, k, and k; are
given by

ky(x;) = 42,9, + 201 — (@, »)?

ky(x3) = 9g1as + 6(1 — V)gy 24,5 + 39141 2,

a
ky(xy) = —12ay + (1 — 3)a, 25 — 12(1 — v)g‘:-;—fﬁ.
1
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It should be emphasized that expansions analogous to (32)-(36) will hold along the other
simply supported boundary line x, =0, 0 < x, < 1/2, since the differential equation (26)
is symmetrical in the spatial variables x, and x,.

Near the corner of the plate domain, where the two simply supported boundaries inter-
sect, i.e. for small values of x, and x,, we find the following leading terms in a two dimen-
sional series expansion for w, satisfying the differential equation (19) and the boundary
conditions (20) and (21),

w(x,) = axixz(xl2 + xzz)—uz + b(xlxz)yz(xlz + xzz)ﬂ i

=arcos Bsin 8 + br(cos Osin 8y** +.... (37)

In (37), a and b are constants, and r = (x, + x,%)!/? and 0 = Arc tan(x,/x,) denote
polar co-ordinates. The agreement between (37) and the expansion (32), which is valid for
small values of x, along x, = constant, is obvious.

From (37), we easily find the leading terms in expansions of Aw, D, # and M, respectively,
to be

Aw = 3b(x,x,) " Y2 4 ... =3br '(cos Osin )"/ 4 ..., (38)

D =% !;;z (x4 ... =g§%r3(cos 8sin 6)>2 + ..., (39
h~D'V = gili—l%i(xlxz)”z +...= %—l—;/l—zr(cos Osin @2+ ..., (40)
M=%-T%;zb-x1 . + ..=£9§f—[j:;br2cosﬂsin9+.... 4n

Note that (37) indicates that the coefficient function g,{(x,) of the singular term in the
x, expansion (33) for Aw is itself singular at x, = 0.

SOLUTION BY SUCCESSIVE ITERATIONS

The non-linear eigenvalue problem consisting of the partial differential equation (26),
the integral equation (27), and the boundary conditions (28) and (30), can be solved numeri-
cally by successive iterations.

The method applied is based upon a formal integration of the fourth order equation (26)
in two steps, each of which involves solution of a second order partial differential equation.

Before going into detail on this, it is worth noting that the statical boundary conditions
of the problem are most conveniently expressed in terms of the scalar moment function
M(x,), see (30). To invoke these boundary conditions in a simple manner, it is therefore
advantageous in applying of (29), to express the differential equation {26) in terms of M
and w rather than in terms of D and w.

Using (29), equation (26) takes the following form, where terms containing second order
derivatives of M are separated on the left-hand side,
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w w
Rt AR A (i v L

= 3Dy — 2(1_‘,){ P LA L a1 127

AW Aw))w“
— (1 —v PSS Lt
( ‘){( Aw 2(Aw Aw

_2(A’uw__zA_lwAzw)w12
Aw Aw Aw | Aw

Aw A, W)z Wit
+ {— —2{= ——1 M. 4
( Aw ( Aw ) Aw} “2)
Since we have not replaced D'/® in the first term on the right-hand side, (42) can be
regarded as a linear, second order partial differential equation with variable coefficients for

the scalar function M. For this equation, we have the boundary conditions (30).
Solving equation (29) with respect to the highest power of Aw, we obtain the equation

1/2

Aw12/3
aw = [+ wd) [T =20 =02 = wawaal]| @

which, in connection with the boundary conditions (28), constitutes a determining Poisson
boundary value problem for the function w, if we assume that the square root function on
the right-hand side is known.

Equations (42) and (43) for solving formally M and w, respectively, and the implicit
integral condition (27) for the eigenvalue A, constitute the basic steps in the subsequent
scheme for successive iterations, where the subscript # refers to the iteration number:

{I) Solve w,(x,) from the boundary value problem

P.D.E.: Aw, = f(x)
B.C.’s: w,(x;, 0) = w,(0, x;) =0,
wn,](l/z’ xz) = wn.l(xlﬂ C/2) = O

Hereby, w, ;y, w, 2, and w, ;, are also determined.

(11) Inner iteration loop (local subscript 7, i = 1, 2, ...) for determining 4, and D,!3(x,):

A+ w2 1/2
D! (x,) = YT ]
@) (%) [(Aw,.)z +2(1 = W[(Wy12)* = Wa11Wn.22]

J f D”3 de‘dxz

() Ay =22
f D”3 dx, dx,

When convergence is obtained, put 4, = 4; and D,'3(x,) = D(x,).
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(111) Compute the coefficient functions

LPRE Wy.22

Aw +vAw

a”(xﬂ) =

" n

2b,(x,) = 2(1 — v) 212

Aw,
w Wy 22
C,,(Xa)zv n.11+ m22
Aw,  Aw,

Differentiate Aw, and compute

pa(x) =21 = v) {

AWy Waaa A,w, Wn,lz}
Aw, Aw, Aw, Aw,

gu(x) = 21 — ) {

A w,Woqr  Ayw, Wn.lz}
Aw, Aw, Aw, Aw,

rix) = (1-=v) {[A.llwn _n [A’lwn:' 2] Wn,22

Aw, Aw, Aw,
_ 2 [A.IZ Wn - 2 A,!wn A,Z wn] wnJZ
Aw, Aw, Aw, | Aw,

A.ZZ Wy A,Z Wy 2 Wn.ll}
8 v ol s
(IV) Solve M ,(x,) from the boundary value problem
P.D.E.: a(x )M,y +2b(x )M, 5+ e (xIM, 5,
= 3Dn”3wn - pn(xzz)Mn—l a1 gn(xa)Mn—] 2 rn(xa)Mn-l
B.C.s: M (x,0) = M0, x;) =0,
M, ,(1/2, x3) = M, 5(x,, ¢/2) = 0.
{V) Compute

Aw 12/3
Sar1(X) = [(An + an) [M"] - 2(1 — V)[W.iIZ - Wn,llwn,ZZ]]

n

1/2

The starting point of each iteration is the function f,(x,), obtained from the previous
iteration. Knowing this function we obtain w, and its derivatives up to second order by
solving the Poisson boundary value problem (I). Now, a value of 4, corresponding to w,
can be determined by the inner successive iteration loop (11). Hereby, the iterate D,(x,) is
also determined.

In the third step (I1H), the coefficient functions for M and its derivatives in equation (42)
are computed. Note that some differentiations of Aw, cannot be avoided here. The coefficient
functions are used in step (IV), where the new moment function 3 (x,) is solved from the
second order terms on the left-hand side of the differential equation, whereas the moment
function and its first derivatives, on the right-hand side, are taken from the previous iteration.

Finally, at the last step (V), we obtain the starting function f, . ,(x,) for the next iteration.

The first iteration is started by means of an arbitrary function f(x,), and by taking the
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function M(x,) identically zero. We thereby avoid differentiations of Aw, = f;(x,) during
the first iteration, in which this function is not yet adapted to higher order boundary condi-
tions.

Though fourth order derivatives of w are in fact found on both sides of equation (42)
(M contains second derivatives of w), and though second order derivatives are found on
both sides of equation (43), the terms written in the left hand sidest of these equations prove
to be sufficiently dominant to ensure global convergence by the iteration process.

When convergence is obtained, i.e. when the sequence of iterates has become stationary,
the optimal eigenvalue and the corresponding thickness function are computed by means of
(24) and (25).

The numerical solution of the problem is based upon finite difference formulations of
the equations, and performed by representing discretely the iterates in a rectilinear grid
with sides parallel to the coordinate axes.

However, as the solution w has singular second and higher order derivatives normal to the
simply supported edges of the plate, it is necessary to determine the type of this singular
behaviour analytically, as in the previous section. When this behaviour is known, the
singularity of each singular iterate is separated as a multiplying mathematical expression,
which is taken care of analytically by specially prepared finite difference approximations and
integration procedures. This leaves only the regular remainder of each singular iterate for
numerical treatment.

RESULTS

The optimal thickness function for a simply supported square plate is illustrated in Fig. 2.
Note that the thickness function is proportional to the square root of the normal distance
from the edges in the vicinity of the edges, in accordance with the results of the singularity
investigation. In the vicinity of the plate corners, the thickness function is directly propor-
tional to the distance from the corner point.

Fig. 2. The optimal thickness function for a simply supported square plate.

+ The iterates M, and w,, respectively, are solved by integration of these terms.
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-w"H for x5 2 i/12

wx 10

1/2 X*,

Fig. 3. The deflection function w and some derivatives for the optimal, square plate. The
ordinate scales are equal.

For this square plate, Fig. 3 shows the eigenfunction w and its derivatives w, and w
for different values of the coordinate x,. As indicated by the series expansion (32), the
second derivative has a square root singularity, while the first derivative is finite along the
simply supported x,-axis. Both functions jump to zero at the corner of the plate.

Figure 4 illustrates the thickness function of an optimal simply supported rectangular
plate with the aspect ratio ¢ equal to 2. In Fig. 5, the second derivatives w ,, and w ;; of the
corresponding eigenfunction are shown for different values of the coordinates x; and x,,
respectively.
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Fig. 4. The optimal thickness function for a simply supported rectangular plate with the aspect
ratio ¢ = 2.

Beside the singular behaviour, the smallness of w ,, near the x, = 1 plane of symmetry
should also be emphasized. This indicates that the eigenfunction w is rather independent of
the x,-coordinate in a sub-domain near the plane of symmetry mentioned. The thickness
function too, has this behaviour, see Fig. 4.

In fact, by increasing the aspect ratio ¢ of the plate, we find the x,-independence in an
increasing part of the plate domain, whereas the x,-dependence remains limited within two
small sub-domains close to the shorter sides of the plate.

In Table 1, the optimum fundamental eigenvalue

A =w?pa®12(1 — v})/EV?

Table 1.
< A w/wu = \/()\/Au)
1 4681 1-096
7/6 2613 1-102
3/2 115-0 1-128
2 51-73 1-166
5/2 29-44 1-185
3 18-97 1-192
7/2 13-22 1-192
4 9-740 1:190
5 5908 1-184
6 3-962 1-177
7 2-844 1-172
10 1-346 1-164

15 0-5866 1-159
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Fig. 5. Second derivatives of the deflection function w for an optimal rectangular plate with the
aspect ratio ¢ = 2.

for a simply supported plate is listed for different values of the aspect ratio ¢. The right-hand
column in the Table gives the ratio between the optimum fundamental angular frequency
w and the corresponding frequency w, of a uniform plate of equal boundary, volume and
material.

The results presented in this section presuppose Poisson’s ratio to be equal to 0-3. 1t
should be emphasized that the governing differential equation and the boundary conditions
contain v, which will influence the shape and the eigenvalue 4 of the optimal plate. This
influence was found to be weak. Young’s modulus F and the mass density p affect the
natural angular frequency w, only.

Asymptotical behaviour for ¢ =

It can be shown that except for a scaling factor, we as a special case obtain the optimal
height function of a simply supported vibrating solid beam of constant width in the x,-
independent domain of a sufficiently long plate.

In fact, by cancelling all x,-derivatives in equations (16), (18) and (19) and neglecting the
deviations from x,-independence in the integrands of (18), the double integrals of this
equation can be reduced to single integrals with the aspect ratio ¢ as a multiplying factor.
Thereby, the governing equations for w, 4 and £ of the plate optimization problem transform
exactly into the corresponding ordinary differential equations for the solid beam optimiza-
tion problem. The only exception is the equation for the optimal beam eigenvalue, which
cannot be obtained in this way.

Assuming that the x,-independence of the solutions hold for an infinitely long plate, it
can be shown that the plate frequency ratio w/w, mentioned above has an asymptotical
value, as ¢ tends to infinity. This value is equal to the corresponding frequency ratio for
simply supported beams of constant width and, as a special case in [5], is found to be 1-119.

X
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FINAL REMARKS

The optimality equations derived for solid plates in this paper are necessary conditions
only, and they may have a variety of solutions.

The numerical solutions obtained have rather smooth thickness variations, and they must
be considered as local optima, since the fundamental frequency would be further increased
by using some of the given plate volume to introduce integral stiffeners.

Solutions to the present optimality equations, having stiffener-like thickness variations,
are likely to exist. However, considerable thickness variations will inevitably imply changes
in the sign of the scalar moment function along interior curves in the plate domain. The
vanishing of the moment function along these curves will result in zero thickness and singu-
larities in the second derivatives of the deflection at each curve. Except for a finite deflection,
the behaviour will be similar to that near the simply supported edges.

However, the possibility of seeking and obtaining solutions that are also singular along
internal curves in the plate domain has not been implemented in the present numerical
technique. As a matter of fact, solutions of this type will also be local optima, since there
is not a global optimum solution. This fact can be explained as follows.

Consider first a given, simply supported rectangular plate of size a x ac and volume V,
see Fig. 6a. Now, let us apply, say, half of this volume to form two stiffeners with rectangular

V/2
| |
!
‘ v | vel o
0
ST =T
i ]
1
: s
o]
Fig. 6a. Original plate. Fig. 6b. Plate structure composed

by stiffeners and plate elements.

cross sections of width & and bc, respectively, along the planes of symmetry as shown in
Fig. 6b. Furthermore, let us distribute the remainder of the volume in four identical plate
elements, geometrically similar to the original plate. As illustrated in Fig. 6, we let the
resulting plate structure retain the side lengths @ and ac of the original plate.

By making the stiffeners sufficiently high (thereby reducing the widths), we may increase
their bending stiffness so that they can provide almost ideal simple supports for the plate
elements. Furthermore, we achieve that the fundamental frequency of transverse vibrations
of the resulting plate structure will equal the frequency of the plate elements. Now, using (2)
for physically and geometrically similar plates, we easily find that this frequency is at least
twice that of the original plate.

Performing a similar process for each of the new plate elements in the structure, we at
least double the frequency once more, and so forth.

Thus, using some of the prescribed plate volume to form sufficiently many, very high and
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very thin stiffeners, we can exceed any finite value for the fundamental frequency. This
indicates that a global optimum solution does not exist in the present sense.
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